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Measuring the value of intangibles is not easy, because they
are critical but usually invisible components of the innovation
process. Today, access to nonsurvey data sources, such as admin-
istrative data and repositories captured on web pages, opens
opportunities to create intangibles based on new sources of
information and capture intangible innovations in new ways.
Intangibles include ownership of innovative property and human
resources that make a company unique but are currently unmea-
sured. For example, intangibles represent the value of a com-
pany’s databases and software, the tacit knowledge of their
workers, and the investments in research and development (R&D)
and design. Through two case studies, the challenges and pro-
cesses to both create and measure intangibles are presented using
a data science framework that outlines processes to discover,
acquire, profile, clean, link, explore the fitness-for-use, and statis-
tically analyze the data. The first case study shows that creating
organizational innovation is possible by linking administrative
data across business processes in a Fortune 500 company. The
motivation for this research is to develop company processes
capable of synchronizing their supply chain end to end while cap-
turing dynamics that can alter the inventory, profits, and service
balance. The second example shows the feasibility of measure-
ment of innovation related to the characteristics of open source
software through data scraped from software repositories that
provide this information. The ultimate goal is to develop accurate
and repeatable measures to estimate the value of nonbusiness
sector open source software to the economy. This early work
shows the feasibility of these approaches.

intangibles | measurement | open source software | data science |
nonsurvey data

Many inputs to innovation in the form of research and devel-
opment (R&D) expenditures are well-measured; however,

broader flows of inputs for innovation within government, indus-
try, academic, and household sectors are less well-captured (1).
Innovation is typically captured and measured using surveys,
patent analysis, case studies, and peer reviews, and most avail-
able statistics are focused on the business sector. Definitions of
innovation focus on the creation of new and improved products,
processes, and marketing and organizational business mecha-
nisms. Innovation is measured through its incidence (survey
measurement), activities (primarily science, technology, engi-
neering, and mathematics education and workforce), outputs
(products and processes), and outcomes (economic growth and
societal benefits) (2). Because of the link to economic growth,
policymakers and researchers are interested in understanding
and supporting activities that lead to innovation.

Traditional approaches to measuring innovation leave many
types of innovation and inputs to innovation uncaptured, because
they are produced within firms, are not commercialized, and
often represent intangible assets that are hard to put a price on,
such as knowledge, core competencies, and business processes,

including organizational innovation (3). Today, there are many
examples of innovative outputs that are not sold in the market,
such as open source software (OSS) and free online education
(4). Furthermore, activities in the household sector, including
inventions and social innovation (e.g., food delivery to poor rural
children during the summer), are not included in summary data
on innovation, because they are outside of the scope of business
activity (5). There are many nonsurvey data sources created and
used in the business and nonbusiness sectors that may provide
signals that can lead to new measures of innovation.

Key Terminology
Innovation. Innovation is the implementation of a new or signif-
icantly improved product (good or service) or process, a new
marketing method, or a new organization method in business
practices, workplace organization, or external relations. This def-
inition is based on the Oslo Manual, which provides guidance
for internationally comparable measurement and is produced by
the Organization for Economic Cooperation and Development
(OECD) and Eurostat (6). The ideas of Schumpeter (7) are fun-
damental to this understanding of innovation, emphasizing the
role of market forces in producing change through new prod-
ucts and processes, new markets, the discovery of new inputs,
and changes in the organization of firms and markets.

Intangible Capital. Intangible capital is a nonphysical factor ex-
pected to generate future benefits to the entities that control
their use (6).

Intellectual Property Products. Intellectual property product is a
classification category in national economic accounts in which
some intangible capital is measured. These products include
computer software and databases, R&D, and entertainment and
artistic originals (5).

Through a process of data discovery, acquisition, statisti-
cal data integration, and visualization, we use nonsurvey data
sources, such as administrative records that capture business
transactions and websites that capture repositories, to identify
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intangible inputs to innovation. Our focus is to assess accessi-
bility and quality of the data to develop innovation measures.
The ultimate goal is to evaluate the feasibility of creating scal-
able and repeatable metrics of innovation in the economy using
these nonsurvey data sources to supplement and enhance sur-
vey data collected by agencies, such as the National Center for
Science and Engineering Statistics within the National Science
Foundation (NSF).

Measuring Intangible Capital
Many nations collect firm-based survey data through statisti-
cal agencies, requiring extensive research and testing to tune
survey language to both the needs of statistical users and the
data that firms are able to provide. In the United States,
data about company innovation are collected through the NSF
Business Research & Development and Innovation Survey (8).
The community innovation survey is conducted every 2 y by
national statistical offices throughout the European Union and in
Norway and Iceland (9). The surveys are harmonized and
designed to provide information about innovation by sector and
region. The data are used to create the European Innovation
Scoreboard and study innovation. Other countries also conduct
community innovation surveys, such as Japan, Australia, and
Canada (10).

These innovation surveys ask companies if they have produced
innovative processes or products or developed new organiza-
tional processes or business models. Many observers argue that
an unknown and potentially large part of innovation activity is
currently unmeasured or undermeasured. Indicators focused on
business sector activity are likely to miss the innovation that is
incremental or that takes place in universities and government
laboratories and by individuals, obscuring a potentially large set
of contributions and linkages.

Martin (11) has referred to this as “dark innovation,” the
amount of innovation activity that is outside the scope of current
measurement. A broader approach to defining innovation would
encompass not only business activity but also, the innovation
that takes place in households, universities, and governments. In
these cases, innovation occurs when the product is used, rather
than sold in the market (12), and is referred to as free innovation
(4) or household production (13).

In the business sector, indicators for related but different activ-
ities, such as R&D performance and patenting, are often used
as proxies for innovation. Both have limitations, as the innova-
tion survey (used since 2008 in the United States) has focused on
R&D performers, whereas patenting is more prevalent for some
technologies than others. According to data collected using the
Oslo Manual definition (6), one in six US firms (17%) introduced
a new or significantly improved product or process between 2013
and 2015 (14). While these data do not provide cost savings from
process improvements, firm revenue from the sale of products
that were new to their markets was $1.2 trillion (8).

Innovation leads to the creation of economically useful knowl-
edge in the form of intangible assets that can be an output of a
productive process as well as an input into the creation of new
output. These include creative works, scientific works, discover-
ies, inventions, and computer software as well as systems created
within businesses. In addition to being outputs, these intangi-
ble assets also have the capacity to contribute to production of
goods or services or are intended to generate future benefits to
the entities that control their use (15). Intangibles are more likely
to create spillovers and synergies than tangible capital (16).

Not all intangible investment becomes a successful innovation;
however, the creation of these intangibles is a key activity in
the process that brings new discoveries into use (16). When the
resources used to create intangibles are measured, a cost-based
measure of intangible investment can be estimated. As currently
measured in US economic accounts, the magnitude of intangi-

ble investment is comparable with that of tangible investment in
machinery, business equipment, and other capital equipment.

While US private sector investment in equipment (exclud-
ing that used in homes) was $1.1 trillion in 2017, investment
in three intangible assets (intellectual property products) was
almost $800 billion in 2017: R&D accounted for $335 billion,
artistic originals accounted for $85 billion, and computer soft-
ware accounted for about $375 billion according to Bureau of
Economic Analysis (BEA) data. Of this software investment,
more than one-third is created internally for the firm’s own use,
one-third is on custom software, and less than one-third is on
prepackaged software (17).

Economists and others argue that there are important other
types of intangible capital, including firm investments in human
capital embedded in people (18). Examples of intangible capital
investments are formal investments to create designs, develop
and protect brands, train human capital in firms, and change
organizational processes (19, 20).

Business accounting treats intangible investment somewhat
differently from gross domestic product (GDP) accounts based
on different accounting objectives (21). National accounts guide-
lines, designed to provide an aggregate picture of economic
activity from the perspective of both buyers and sellers, rec-
ommend treating expenditures on intangibles, such as R&D,
as investment, because they contribute to future production
and income generation (22). In contrast, generally accepted
accounting principles call for immediate expensing of R&D
expenditures, because future benefits are uncertain (21).

Science of All Data
Hard-to-measure things are an increasing share of economic
output. The data science framework, described in this section,
gives us a way to think about measurement using existing data
to capture undermeasured innovation. The objective of the data
science framework is to leverage the data revolution by creating
repeatable and measurable processes for the use and repurpos-
ing of existing data sources to support research questions. We
have adopted the term “all data revolution,” since our research
focuses on data of all sizes, not just big data (23). This is an
important distinction.

We categorize data into four categories and provide examples
in the context of this paper (24, 25). Categorizing data by types
can accelerate the data discovery phase (described below).

Designed data involve statistically designed and intentional
observational data collections, such as from surveys, experi-
ments, and registers. The NSF’s Business Research and Inno-
vation Survey is one example of a statistically designed survey to
measure innovation (8), and the R&D Satellite Account (26) to
the GDP is an example of an intentional data compilation that
provides statistics on R&D investment.

Administrative data are collected for the administration of an
organization or program by entities, such as government agen-
cies, as they provide services, companies to track orders, and
universities to record registered students.

Opportunity data are derived from internet-based informa-
tion, such as websites and social media. For example, software
repositories (e.g., OpenHub) provide not only the code but also,
documentation and information about the creation and the use
of the software, such as contributors and downloads.

Procedural data focus on processes and policies, such as a
change in health care coverage or a data repository policy that
outlines procedures and metadata required to store data.

Through our research, including research on intangible mea-
surement, we have developed a data science framework (Fig. 1)
to create methods to identify and integrate multiple data sources
to address specific research questions (27).

Data discovery identifies data that naturally exist, including
administrative, previously designed data collections, opportunity,
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Fig. 1. Data science framework. The process starts with the research ques-
tion and continues through the following steps: data discovery, inventory,
screening, and acquisition; data quality assessment (data profiling); data
preparation and linkage; data exploration; assessment of the fitness-for-use;
and statistical modeling and data analyses. Adapted with permission from
refs. 24 and 27.

and procedural data. These data sources are likely to have been
collected for other reasons other than the problem at hand and
require repurposing to measure concepts of interest. After dis-
covered, the data sources are inventoried and then screened to
determine which are useful to acquire for the intended research
questions.

Data ingestion and governance involve the quality assessment
of the data sources through data profiling to evaluate the rep-
resentativeness, timeliness, accuracy, consistency, completeness,
reliability, and relevance of the data. The ingestion process needs
to capture all known metadata and provenance to help guide
the profiling processes and inform the data preparation steps.
The data may come from many difference sources. The gover-
nance (e.g., access and privacy) that surrounds the data needs to
be captured and adhered to during the data linkage steps. Data
exploration combines and explores the data to gain an under-
standing in the spatial and temporal biases and coverage relative
to the specific research questions.

Fitness-for-use assessment, statistical modeling, and data
analyses are tightly coupled. Given a particular analysis, fitness-
for-use of the associated data is a characterization of the infor-
mation content in the data that can support the particular
analysis. This is a function of the statistical model(s) used, the
data quality needs of the model(s), and the data coverage needs
of the model(s). Of note, the statistical modeling and analy-
ses step is considered broadly in this framework and includes
evaluation.

The components in the data science framework are based
on scientific principles from the engineering and computational
fields (e.g., statistical process control, Total Data Quality Man-
agement, visualization tools, and simulation experiments) (28).
The processes represented in our framework are critical for
creating defensible and repeatable measures.

In this paper, we highlight the value and use of the data sci-
ence framework through the presentation of two case studies that
focus on intangible capital as an input to innovation. These stud-
ies, described below, show that it is challenging yet possible to
create intangible innovations and to uncover existing intangible
assets using nonsurvey sources of data.

Case Studies
Organizational Process Innovation in a Fortune 500 Company to Syn-
chronize the Supply Chain Using Administrative Data. Developing
organizational processes in a company is an investment that

produces assets that are expected to be used repeatedly. Some-
times, these developments are routine and based on traditional
models and data sources, such as simulation models for supply-
chain synchronization based on material flows. In contrast, this
case study is an example of using and linking administrative
data (e.g., customer orders) and procedural data (e.g., holiday
schedules) across existing data silos in a capital-intensive Fortune
500 company to synchronize the supply chain. The data sources
used are traditionally used in business analytics applications
and not for supply-chain synchronization. This process innova-
tion uses a combination of Bayesian Hierarchal Modeling and
discrete event simulation to simulate the supply-chain process
from orders through shipments. The activities to undertake this
research require tangible (e.g., data) and intangible (e.g., knowl-
edge) inputs that lead to tangible outputs (cost reductions due to
more efficient processes, on-time delivery rates) and intangible
outputs (satisfied customers who receive their shipments accu-
rately and on time). The expectation is that the benefits of these
intangible outputs will lead to higher total shareholder returns
paid through dividends to their shareholders. Procter & Gamble
(P&G) uses similar language in defining how changes affect
their bottom line through improvements in productivity and
costs (29).

Although this research has already been published (30), here
we are highlighting why the research produced intangible innova-
tions in the creation of new knowledge and processes. In this case
study, P&G, a manufacturer of consumer nondurables goods,
sought to optimize their supply-chain processes through business
transaction data (i.e., administrative data). The motivation for
this work was to understand the interactions of inventory, profit,
and service. Working collaboratively, we developed a set of inte-
grated models to create a data informatics synchronization of
the supply chain. The data include thousands of orders for prod-
ucts that are produced at and/or shipped from one of their P&G
facilities to customers who are primarily retailers.

Traditional approaches to synchronize the supply chain are
largely based on historical data. In the model presented here,
we acquired both current and historical data and used these
data to inform the model structure and as inputs to the mod-
els. This acquisition and use of the data in this case study show
that implementing the data science framework is not a lin-
ear but rather, an iterative process. During data discovery and
inventory phases, we held many discussions with subject mat-
ter experts (those responsible for operations at each step of the
supply-chain process) in the company and by “walking” the sup-
ply chain through site visits to the suppliers, the factory floor,
distributors, and retailers. Data profiling, cleaning, linking, and
exploring the data involved documenting and identifying gaps,
leading to the creation of a conceptual data model illustrated
in Fig. 2.

The conceptual data model was a critical component of the
research, providing a deep understanding of the supply-chain
process through the mapping of the data flows. Using 1 y of
administrative data, the data model brought together numer-
ous data sources on customer orders, production, raw materials,
inventory, shipments, and deliveries. The data tables are large
(some of which contain over a million records), complex, and
frequently, poorly documented. Our criteria for using the data
were whether metadata that clearly articulated the relation-
ships between the tables could be created and used to pro-
duce clean, accurate, and reliable tables for use in the model
building.

Data preparation entailed standardizing the data to common
units and exploring the data to inform the model development,
leading to the creation of four interconnected simulators: (i) the
orders simulator, (ii) the production simulator, (iii) the produc-
tion planner simulator, and (iv) the shipment simulator. These
simulators capture the supply chain, including estimating actual

12640 | www.pnas.org/cgi/doi/10.1073/pnas.1800467115 Keller et al.
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Fig. 2. Two different but complementary views of the administrative and
procedural data flows identified to support the supply-chain synchroniza-
tion. (Upper) A notional diagram of administrative data flows. Solid lines
indicate where direct linking was found, and dashed lines indicate where
modeled links were created. (Lower) A depiction of the many data sources
associated with activities across the supply chain that were used directly in
the models or used to inform the modeling. The data are color coded to
align with the different features of the supply-chain process. Starting in the
top right-hand corner, the orange boxes represent strategies and forecasts,
the teal boxes show procedural data, the purple boxes are product-related
data, the chartreuse boxes are costs and revenues, the maroon boxes are
constraints (primarily shipping constraints), and the blue boxes are a variety
of other measures from the supply-chain system. SKU, stock-keeping unit.

and simulated profits to validate the model. Much of the dynam-
ics may be the result of the fact that humans are involved in
all of the activities represented by the data. Although we have
not yet tested this hypothesis, we believe that these dynamics are
implicitly folded into the analysis as a result of using the business
transaction data.

After calibrating the production planner simulator to repro-
duce recent historical results, strategies were explored to opti-
mize profit and service characteristics. The model was parame-
terized so that the relative weights of demand, profitability, and
rarity (products rarely ordered) could be adjusted, affecting how
the production planner assigns production runs to lines given the
customer orders (Fig. 3). We carried out a series of simulations
to seek an optimal setting for the production planner. The results
show a reduction in inventory and increases in profits and on-
time delivery (service), thus increasing total shareholder return.
Exact results cannot be shown due to the proprietary nature of
the data.

This study shows that administrative data can be used to cre-
ate a business process innovation through the development of
models that are faithful to the supply-chain process and take into
account the human interactions inherent in the data as well as
the mechanical processes. This use of separate but linked statis-
tical and discrete event models allows different sources of data to
inform a manager about the supply-chain system and to predict
its behavior under new conditions.

This approach allows flexibility to control and optimize the
supply-chain process while providing a window into the entire
supply-chain process. It captures the variations in the models and
forecasts. Ultimately, these measures affect cash flow and total
shareholder returns of the company. A next phase is to explore
how it could be applied to other capital-intensive industries, like
P&G, and in other types of industrial settings.

Measuring OSS, Innovation Activity, and Intangible Capital. This
case study explores the possibility of measuring the value of
the creation and use of an important intangible, OSS, through
nonsurvey data sources. The Open Source Initiative (https://
opensource.org/) defines OSS as a computer software with its
source code available with a license in which the copyright holder
provides the rights to study, change, and distribute the software
to anyone for any purpose.

Corrado et al. (20) describe intangible investment as expendi-
tures intended to increase future output and consumption, and it
is not dependent on whether the output is shared. However, shar-
ing is an essential feature of OSS, and these motivations lead to
software tools and activities with the fundamental characteristics
of intangibles as capital investment.

Existing US statistical data on computer software investment
account for business and government investment and do not sep-
arately identify OSS. Within the United States, investment in
software by government and the private sector was nearly $400
billion in 2016 (31, 32). Investment in this internal use soft-
ware is estimated based on compensation of employees and input
costs (33).

While empirical data on the full extent of OSS are absent,
evidence suggests that the scope and impact of public invest-
ments are substantial. For example, Apache is estimated to
hold the largest market share of domains (35%) and active
websites (41%) as of June 2018 (34). Apache was originally
developed and used at the National Center for Supercomput-
ing Applications at the University of Illinois, and it included
federally supported research. The software was not developed
in the business sector, but now, it is a significant contributor
to business sector activities. Greenstein and Nagle (35) esti-
mated the capital stock of Apache software (having a replace-
ment cost in terms of the nearest available substitute) to be
between $512 million and $12.8 billion in 2013. To the extent
that the magnitude of this investment is significant, Greenstein
and Nagle (35) note two measurement concerns: first, the omis-
sion of an investment good with a value but no price, and
second, the attribution problem. When productive inputs are not
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Fig. 3. Simulated profit for all on-time deliveries over the course of the
test month as parameters of the production planner are varied. A response
surface was fit to the simulation output, suggesting optimal planner
settings.
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Table 1. Data discovery, inventory, and acquisition of software repositories

This table presents a description of six software repositories found during the data discovery and inventory phase of this research. The data provided
in each repository and potential uses of the data are presented. The first three, Depsy.org, SourceForge.net, and OpenHub.net, were chosen for the initial
study based on the variables of interest. The data were collected in July 2017.

12642 | www.pnas.org/cgi/doi/10.1073/pnas.1800467115 Keller et al.
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measured, their impact can be attributed incorrectly to measured
inputs (35).

The investments made in the private sector and in govern-
ment in developing OSS are conceptually accounted for in BEA’s
estimates through the compensation of the software program-
mers and their related costs. What is missing is the value of the
created OSS itself. For example, the Linux Foundation develop-
ment report notes that, since 2005, over 15,000 developers from
over 1,500 companies have contributed to the Linux kernel, with
more than 200 companies and 1,500 programmers participating
on a particular version (36). The part of OSS that is created
and developed within universities and federal laboratories and
by individuals is less well-understood and not measured.

Current and comprehensive survey data do not exist for the
contributions of OSS. However, as it is disseminated online, a
wealth of information is available to be scraped (i.e., opportu-
nity data that include both metadata and information embedded
in repositories and in the code and headers of the software
programs themselves). Our contribution is to show how these
data can be used to develop measures of OSS, shedding light
on the impact of OSS innovation, which is currently not well-
understood. The characteristics of OSS from software reposi-
tories are collected using publicly available data with the goal
to test whether accurate and repeatable models can be built to
estimate the value of nonbusiness OSS to the economy.
Data discovery, inventory, and acquisition. The data discovery
phase for measuring OSS was guided by the following dimensions
that are used for measuring creation and use of software (16).

Stock measures: How much OSS is in use?
Flow measures: How much is created each year?
Categories: What types can be identified?
Sectors and collaborators: Who creates it?
Users: Who benefits from its development?

The data discovery involved looking for data sources that
might have information to capture these dimensions. Table 1
presents the results of our data discovery, inventory, and acqui-
sition steps. Six software repositories (SourceForge, OpenHub,
Depsy, GitHub, OSalt, and Stack OverFlow) are described with
respect to their potential use to inform our research. The acqui-
sition component of Table 1 summarizes the complexity of

Table 2. Categories, numbers of projects developed, and
subcategories of OSS projects on SourceForge

Category Projects Top subcategories

Development 80,134 www/http (26%),
software development (8%)

Games 25,117 Games/entertainment (23%),
role playing (13%)

System administration 21,218 Networking (19%),
storage (15%)

Science and engineering 18,007 Bioinformatics (14%),
artificial intelligence (12%)

Communications 17,302 Chat (32%), email (21%)
Business and enterprise 13,536 Enterprise (27%),

financial (24%)
Audio and video 8,254 Sound/audio (68%),

video (27%)
Home and education 7,639 Education (39%), computer-aided

instruction (15%)
Graphics 6,797 3D rendering (19%),

3D modeling (12%)
Security and utilities 4,975 Security (59%),

cryptography (35%)
Other/nonlisted Topic 4,811 No subcategories given
Multimedia 708 No subcategories given

Fig. 4. The median number of downloads of projects on SourceForge by
category.

acquiring the discovered data sources. SourceForge, OpenHub,
and Depsy were initially chosen for our study based on the
variables of interest.
Analysis. This step starts with data profiling and assessing the
quality of the data followed by cleaning and linking various
datasets. This allows us to map the dimensions into variables that
we can obtain and measure using the data sources. The map-
pings from variables to the dimensions could be listed as the
following.

Stock measures: Active completed projects, downloads
Flow measures: New projects (annual and cumulative), lines of
code, commits (submitted edits to the code), and man-hours
Categories: Type of software (purpose of the package)
Sectors and collaborators: Contributors’ sectors (business,
government, academic, nonprofit, individual, foreign)
Users: Downloads, citations, other developers (reverse depen-
dencies)

Exploratory analysis. This initial exploration of the data helps
us understand what is feasible in terms of measurement of OSS
creation and use.

SourceForge data were used to explore the scope of OSS,
as it includes information about the categories (types) and the
downloads of the OSS projects. We collected information about
449,274 projects and 50,000 contributors over the span of 18
y (1999–2017). SourceForge uses categories and subcategories
to characterize the OSS projects. This allows us to analyze the
type (purpose) of the projects and measure their respective
demands using downloads. Table 2 presents the total number
of OSS projects and top subcategories for various categories on
SourceForge. The number of projects developed (supply side)
in the development category (80,134 projects) is significantly
higher than those in the remaining categories. This category is
followed by games, system administration, science and engineer-
ing, and communications. When the download volume (demand
side) is analyzed, we observe a few projects with high down-
loads [such as Microsoft’s TrueType core fonts (2,079 million
downloads), eMule (685 million), and Apache (238 million)], and
many projects with a low number. Fig. 4 illustrates the median
download volumes by category. SourceForge as a data source
contains valuable information for eventually modeling the value,
scope, and impact of OSS.

OpenHub data are used to delve into the development of
OSS projects, as it includes information about the lines of code,
devoted time, the number of commits, the contributors, and the
languages that they are written in. OpenHub includes develop-
ment and activity information on 676,523 projects, 291,782 users
and contributors, and their activity (e.g., commits). We have
information about 698 organizations and their portfolio of 2,850
projects. We used their application programming interface (API)
to collect information on two random sets of projects: (i) a subset
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Fig. 5. The distribution of total lines of code, commits, and contributors for
two random sets of projects on OpenHub: (i) a subset of the most popular
projects based on number of users (55,217 projects) and (ii) a subset of all
projects (46,005 projects).

of the most popular projects based on number of users (55,217
projects) and (ii) a subset of all projects (46,005 projects). For
each of these projects, we collected the total lines of code, total
number of commits, and total number of contributors. Fig. 5
illustrates the distributions of these variables for the two subsets
of projects. OpenHub data show the feasibility of capturing sig-
nificant information that could be used in models to assess the
value of OSS. For example, these variables (e.g., total lines of
code and number of commits) could be used to estimate the
effort and the cost of production, as they capture the inputs to
development (man-hours and the number of workers), as is done
in constructive cost models for proprietary software (37).
Network analysis. As mentioned before, collaboration and shar-
ing are essential features of OSS development.

Methods to measure the value and cost of these projects need
to take into account the interactions (i.e., collaborations between
contributors and the dependencies between packages). Network
analysis allows us to incorporate the structural properties of
these interactions in models that estimate the impact and cost
of OSS.

Depsy creates a very rich source of data, including infor-
mation about contributors, commits, downloads, citations that
can be used to study the development activities, pattern of
complex interactions among community members, and package
dependencies to evaluate OSS projects (38).

We use Depsy to collect information on R packages. Some
of the top downloaded and top cited packages are presented in
Table 3. The average number of downloads is 45,775, and the
median is 8,508; the average number of citations is five, and
the median is zero. Citations are used to measure the impact
of patents and publications and are frequently used to estimate
the research outputs of universities and government institu-
tions. However, it is not a common practice to cite the software
packages that are used in published studies (39); hence, it is prob-
lematic to use citations to evaluate OSS projects (40, 41). We find
that most R packages (74%) do not have any citations in Depsy,
although they have a large number of downloads and reverse
dependencies.

Depsy provides information on the packages that are required
for the development of others (i.e., dependencies or reuses).
We have generated the network of R packages where a directed
edge i → j indicates that the package j requires i to be installed
to function. We obtain a network with 7,547 nodes and 20,641
directed edges. The average degree (indegree and outdegree) of
the dependency network is 2.74. This means that, on average,
R packages depend on (and are used by) 2.74 other packages.
Table 3 illustrates the top packages with the highest outdegree
(number of reuses). MASS, one of the packages in the standard
library of R used for statistical analysis, has the highest outdegree
of 955. MASS is followed by ggplot2, a widely used package for
visualization. Matrix is used for matrix operations, and plyr is a
main package for data wrangling and exploration. The outdegree
is an important factor to take into account when developing mea-
sures of impact, as the packages build on these software packages
(they need to be compatible). Around 70% of the packages are

Table 3. Top downloaded and cited R packages in Depsy and the
packages with the highest outdegree (i.e., number of reuses)

Top
downloaded No. of Top cited No. of Highest Outdegree
packages downloads packages citations outdegree

Rcpp 6,683,565 vegan 4,275 MASS 955
ggplot2 6,255,500 lme4 4,023 ggplot2 737
stringr 5,366,703 nlme 2,916 Matrix 514
plyr 5,345,308 ggplot2 1,702 plyr 447

not used by other packages. However, the maximum number of
dependencies that a package has (i.e., indegree) is 27, with a
median of 2. These should be taken into account when estimat-
ing the cost of the package, as these are necessary inputs for their
development.

Network analysis also allows us to identify groups of contrib-
utors or projects that form communities based on structural fea-
tures of the networks. These communities could involve individ-
uals that develop similar projects or use similar tools/languages,
that collaborate with common authors, that apply similar sci-
entific methods (e.g., spatial analysis), or that belong to similar
organizations. Evaluation of academic articles takes into account
different publication conventions of different scientific fields,
such as the number and order of authors. Similarly, the OSS
communities could be characterized for a better evaluation of
the projects and authors.

We identify communities in the dependency network of R
packages using the modularity algorithm (42) implemented

Fig. 6. Reduced dependency network of R packages in Depsy. The full
network includes 7,547 nodes and 20,641 directed edges. MST-Pathfinder
Network Scaling algorithm (44) was used for edge reduction. The re-
duced network has 7,491 edges. The size of the node is proportional to the
outdegree (number of reuses) in the reduced network, and the different
colors indicate communities identified using modularity (42). Communities
that make up less than 2% of the nodes are in gray.

12644 | www.pnas.org/cgi/doi/10.1073/pnas.1800467115 Keller et al.
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in Gephi (43). For illustrative purposes, we used the MST-
Pathfinder Network Scaling algorithm (44) for edge reduction.
Fig. 6 illustrates the reduced network (44) with 7,491 edges,
where the size of the node is proportional to the outdegree (num-
ber of reuses) in the reduced network and the different colors
indicate communities that make up at least 2% of the nodes (the
remaining ones are gray). The communities correspond to dif-
ferent uses of R packages, such as statistical analysis (MASS),
visualization (ggplot2), and data wrangling (dplyr). Methods to
estimate the value of packages need to take into account the
use/purpose and the centrality of the packages in the dependency
network.
Next steps. Our next focus is to estimate the cost of OSS devel-
opment based on the number of hours, lines of code, and other
features of OSS. Wages of software developers or the price of
private software will be used for the estimation of cost and
value. This approach is similar to how other intangible capi-
tal is measured in the national accounts. We will then expand
our models to measure diffusion by including network mea-
sures, such as centrality or number of uses of one software
package by another. We may never be able to measure the
value of all OSS, but even a baseline will show that its value is
substantial.

Conclusion
Most intangible inputs are considered assets, because they are
used repeatedly in production. Not valuing these intangibles
misses changes in firms and the economy, and it leads to
underestimation of productivity, misallocation of resources, and
inaccurate financial statements.

Two case studies are presented that show promising ap-
proaches to create indicators based on intangible investments:
(i) the creation of a new intangible (an organizational process
innovation in a Fortune 500 manufacturing company) and (ii)
the characterization of an unpriced intangible input to innova-
tion (OSS). These case studies show that the value of intangibles
can be measured, thus providing the details of business innova-
tion that survey and other methods do not capture. Our methods
provide an opportunity to extend existing measures beyond those
already used by federal statistical agencies, shining additional
light into the shadows of dark innovation.
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